A Fuzzy Based Approach to Classify Remotely Sensed Images
نویسندگان
چکیده
Classification of Images is one of the challenging tasks in image analysis. Image classification is used in many fields such as Remote sensing, medical diagnosis, robotics, etc. Classification is to identify homogeneous groups of data points in a given dataset and assigning it to a class. In this paper classes of image objects are to be classified as region or area of interest for the land use/land cover types. Different classification techniques available categorize all pixels in a Multispectral image. An attempt had been made to analyse the performance of supervised classification and unsupervised classification methods for RSI images using Fuzzy. Experimental study revealed that the proposed supervised classification approach provides consistently better result than unsupervised classification.
منابع مشابه
Coastal water quality assessment based on the remotely sensed water quality index using time series of satellite images
This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavymetals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...
متن کاملA New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran
In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local s...
متن کاملUrban Land Use Classes with Fuzzy Membership and Classification Based on Integration of Remote Sensing and Gis
Urban land use classification from remotely sensed images has drawn great attention in the past decades. Most researchers derive land use data from remotely sensed images alone, but the results are not quite satisfying for detecting detailed land use classes in urban areas. Fuzzy urban land use classes proposed here consist of a number of fuzzy memberships that offer direct links to findings fr...
متن کاملUnsupervised change detection using fuzzy c-means and MRF from remotely sensed images
Unsupervised change detection using fuzzy cmeans and MRF from remotely sensed images Ming Hao, Hua Zhang, Wenzhong Shi & Kazhong Deng To cite this article: Ming Hao, Hua Zhang, Wenzhong Shi & Kazhong Deng (2013) Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images, Remote Sensing Letters, 4:12, 1185-1194, DOI: 10.1080/2150704X.2013.858841 To link to this article...
متن کاملTexture Based Land Cover Classification Algorithm Using Gabor Wavelet and Anfis Classifier
Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013